metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[di- μ_2 -acetato-diaguabis(2,2'-bipyridine)bis(μ_3 -5-nitroisophthalato)tricobalt(II)]

Hai-Dong Wang, Min-Min Li and Hong-Yin He*

Biological and Chemical Engineering School of Jiaxing University, Jiaxing 314001, People's Republic of China Correspondence e-mail: hhy123@163.com

Received 1 April 2009; accepted 3 April 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.030; wR factor = 0.077; data-to-parameter ratio = 11.9.

The title complex, $[Co_3(C_8H_3NO_6)_2(C_2H_3O_2)_2(C_{10}H_8N_2)_2$ -(H₂O)₂], was synthesized under hydrothermal conditions. The structure features a centrosymmetric complex with three Co^{II} centres, one of which is located on a centre of inversion. The Co centres are coordinated in a distorted octahedral geometry. The bipyridine ligands are bonded to just one Co centre in a chelating mode, whereas the 5-nitroisophthalate and acetate ions are bonded to two different Co atoms. The crystal structure is stabilized by $O-H \cdots O$ hydrogen bonds.

Related literature

For related structures, see: He et al. (2004, 2005); Zhang et al. (2006).

Experimental

Crystal data

[Co₃(C₈H₃NO₆)₂(C₂H₃O₂)₂- $(C_{10}H_8N_2)_2(H_2O)_2$] $M_r = 1061.51$ Triclinic, $P\overline{1}$ a = 10.0084 (1) Å b = 10.0781 (1) Å c = 11.3941 (1) Å $\alpha = 81.196 (1)^{\circ}$ $0.26 \times 0.13 \times 0.10 \text{ mm}$

Data collection

Bruker SMART 1K CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2002) $T_{\min} = 0.724, T_{\max} = 0.883$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	
$wR(F^2) = 0.077$	
S = 1.03	
3679 reflections	
310 parameters	
3 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

, , ,				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1W-H1WA\cdotsO3^{i}\\ O1W-H1WB\cdotsO3^{ii} \end{array}$	0.83 (2) 0.826 (18)	1.99 (2) 1.96 (2)	2.755 (3) 2.762 (3)	154 (2) 163 (3)

 $\beta = 67.685 \ (1)^{\circ}$

 $\gamma = 69.472 (1)^{\circ}$

Z = 1

V = 995.43 (2) Å³

Mo $K\alpha$ radiation

10424 measured reflections 3679 independent reflections

3296 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 1.33 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.020$

refinement

 $\Delta \rho_{\text{max}} = 0.53 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2923).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- He, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2004). Acta Cryst. C60, m569-m571.
- He, H.-Y., Zhu, L.-G. & Ng, S. W. (2005). Acta Cryst. E61, m601-m602.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Zhang, Z., Zhou, Y.-L. & He, H.-Y. (2006). Acta Cryst. E62, m2591-m2593.

supplementary materials

Acta Cryst. (2009). E65, m510 [doi:10.1107/S1600536809012562]

Poly[di- μ_2 -acetato-diaquabis(2,2'-bipyridine)bis(μ_3 -5-nitroisophthalato)tricobalt(II)]

H.-D. Wang, M.-M. Li and H.-Y. He

Comment

Recently, we were interested in polymers formed by isophthalate ligands and the complexes the form with transition metals because of their diverse topologies and potential applications as functional materials (He *et al.*, 2004, 2005, Zhang *et al.*, 2006).

The structure features a centrosymmetric complex with three Co(II) centres, one of which is located on a centre of inversion. The Co centres are coordinated in a distorted octahedral geometry. The bipyridine ligands are bonded to just one Co centre in a chelating mode, whereas the 5-nitroisophthalate and acetate ions are bonded to two different Co atoms. The crystal structure is stabilized by O-H…O hydrogen bonds (Tab. 1).

Experimental

A mixture of $Co(Ac)_2.4H_2O$ (0.1240g, 0.5 mmol), 2,2'-bipyridine (0.0790g, 0.5 mmol), 5-nitroisophthalic acid (0.1050g, 0.5 mmol), 8 ml H₂O and 8ml EtOH was heated at 413 K for three days in a 20 ml Teflon-lined stainless-steel autoclave. After cooling, a red plate shaped crystals of the title compound were obstained.

Refinement

The H atoms of aromatic and methyl group were positioned geometrically, and included in the refinement in the riding model approximation with C-H = 0.93 Å for aromatic H atoms and C-H = 0.96 Å for H atoms of methyl groups and U_{iso} =1.2Ueq(C). The H atoms of the water molecule were found in a difference Fourier map and refined isotropically with the O-H bonds restrained to 0.82 (1)Å and the H···H distance restrained to 1.4 (1)Å.

Figures

Fig. 1. View of the title complex view. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity. Symmetry codes for generating equivalent atoms: (v) x-1, y, z. (vi) x, -y, 1-z. (vii) 1-x, 2-y, 1-z.

$Poly[di-\mu_2-acetato-diaquabis(2,2'-bipyridine)bis(\mu_3-5-\ nitroisophthalato)tricobalt(II)]$

Crystal data

 $[Co_3(C_8H_3NO_6)_2(C_2H_3O_2)_2(C_{10}H_8N_2)_2(H_2O)_2] \qquad Z = 1$

$M_r = 1061.51$	$F_{000} = 539$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.771 {\rm ~Mg~m^{-3}}$
a = 10.0084 (1) Å	Mo K α radiation $\lambda = 0.71073$ Å
b = 10.0781 (1) Å	Cell parameters from 10424 reflections
c = 11.3941 (1) Å	$\theta = 1.9 - 25.5^{\circ}$
$\alpha = 81.196 (1)^{\circ}$	$\mu = 1.33 \text{ mm}^{-1}$
$\beta = 67.685 \ (1)^{\circ}$	T = 296 K
$\gamma = 69.472 \ (1)^{\circ}$	Plate, red
$V = 995.430 (17) \text{ Å}^3$	$0.26 \times 0.13 \times 0.10 \text{ mm}$

Data collection

Bruker SMART 1K CCD diffractometer	3679 independent reflections
Radiation source: fine-focus sealed tube	3296 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 296 K	$\theta_{\text{max}} = 25.5^{\circ}$
phi/ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -12 \rightarrow 12$
$T_{\min} = 0.724, T_{\max} = 0.883$	$k = -12 \rightarrow 12$
10424 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.077$	$w = 1/[\sigma^2(F_o^2) + (0.0358P)^2 + 1.058P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
3679 reflections	$\Delta \rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$
310 parameters	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Drimary atom site logation: structure invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.0000	1.0000	0.5000	0.02056 (11)
Co2	0.29863 (3)	0.66172 (3)	0.34001 (3)	0.02348 (10)
N1	0.5014 (2)	0.4947 (2)	0.26205 (19)	0.0264 (4)
N2	0.2395 (2)	0.5533 (2)	0.23098 (19)	0.0271 (4)
C6	0.3533 (3)	0.4463 (2)	0.1610 (2)	0.0259 (5)
01	0.38924 (18)	0.74188 (17)	0.43457 (16)	0.0283 (4)
09	0.10814 (18)	0.86327 (17)	0.34394 (15)	0.0263 (4)
C11	0.5544 (3)	0.8074 (2)	0.5603 (2)	0.0218 (5)
H11A	0.6088	0.7353	0.5017	0.026*
C17	0.3124 (3)	0.8272 (2)	0.5243 (2)	0.0233 (5)
C16	0.3980 (3)	0.8686 (2)	0.5891 (2)	0.0219 (5)
C19	0.8024 (3)	0.7950 (3)	0.5801 (2)	0.0269 (5)
C12	0.6310 (3)	0.8526 (2)	0.6180 (2)	0.0233 (5)
O3	0.8695 (2)	0.67757 (19)	0.5289 (2)	0.0414 (5)
C5	0.5033 (3)	0.4180 (2)	0.1738 (2)	0.0256 (5)
C4	0.6363 (3)	0.3199 (3)	0.1018 (2)	0.0337 (6)
H4A	0.6361	0.2703	0.0395	0.040*
C14	0.3935 (3)	1.0141 (2)	0.7364 (2)	0.0273 (5)
C13	0.5491 (3)	0.9578 (3)	0.7079 (2)	0.0272 (5)
H13A	0.5977	0.9894	0.7478	0.033*
C15	0.3160 (3)	0.9740 (2)	0.6786 (2)	0.0262 (5)
H15A	0.2114	1.0163	0.6989	0.031*
C9	0.0689 (3)	0.5133 (3)	0.1519 (3)	0.0382 (6)
H9A	-0.0288	0.5389	0.1495	0.046*
C7	0.3293 (3)	0.3687 (3)	0.0849 (3)	0.0352 (6)
H7A	0.4092	0.2951	0.0369	0.042*
C10	0.1008 (3)	0.5858 (3)	0.2260 (3)	0.0328 (6)
H10A	0.0225	0.6601	0.2742	0.039*
C1	0.6309 (3)	0.4698 (3)	0.2832 (3)	0.0327 (6)
H1A	0.6295	0.5217	0.3447	0.039*
C8	0.1844 (3)	0.4028 (3)	0.0818 (3)	0.0406 (7)
H8A	0.1652	0.3512	0.0324	0.049*
C2	0.7661 (3)	0.3707 (3)	0.2180 (3)	0.0379 (6)
H2A	0.8533	0.3539	0.2369	0.046*
N3	0.3069 (3)	1.1250 (3)	0.8321 (2)	0.0462 (6)
C3	0.7690 (3)	0.2970 (3)	0.1241 (3)	0.0392 (6)
H3A	0.8598	0.2323	0.0761	0.047*
O6	0.1710 (3)	1.1769 (3)	0.8577 (3)	0.0776 (9)
O2	0.17072 (18)	0.88101 (19)	0.56665 (16)	0.0318 (4)
O4	0.8652 (2)	0.8704 (2)	0.60355 (17)	0.0369 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

O5	0.3732 (3)	1.1514 (4)	0.8890 (3)	0.1161 (15)
O1W	0.17349 (19)	0.56964 (19)	0.50084 (18)	0.0318 (4)
H1WA	0.0831 (15)	0.620 (2)	0.523 (3)	0.048*
H1WB	0.180 (3)	0.4895 (15)	0.486 (3)	0.048*
08	0.31763 (19)	0.80788 (18)	0.17845 (16)	0.0334 (4)
C32	0.1871 (3)	0.8911 (2)	0.2305 (2)	0.0263 (5)
C33	0.1213 (4)	1.0190 (3)	0.1602 (3)	0.0468 (7)
H33A	0.1949	1.0239	0.0772	0.070*
H33B	0.0952	1.1025	0.2056	0.070*
H33C	0.0314	1.0129	0.1524	0.070*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0155 (2)	0.0220 (2)	0.0263 (2)	-0.00532 (16)	-0.00810 (17)	-0.00619 (17)
Co2	0.02330 (17)	0.02240 (17)	0.02775 (18)	-0.00702 (13)	-0.01024 (13)	-0.00655 (13)
N1	0.0258 (10)	0.0226 (10)	0.0315 (11)	-0.0068 (8)	-0.0108 (8)	-0.0030 (8)
N2	0.0270 (10)	0.0274 (10)	0.0295 (11)	-0.0090 (8)	-0.0106 (9)	-0.0057 (8)
C6	0.0327 (13)	0.0215 (11)	0.0249 (12)	-0.0087 (10)	-0.0114 (10)	-0.0010 (9)
O1	0.0230 (8)	0.0311 (9)	0.0350 (9)	-0.0075 (7)	-0.0115 (7)	-0.0123 (7)
09	0.0279 (9)	0.0240 (8)	0.0270 (9)	-0.0078 (7)	-0.0085 (7)	-0.0052 (7)
C11	0.0251 (11)	0.0195 (11)	0.0236 (11)	-0.0089 (9)	-0.0092 (9)	-0.0022 (9)
C17	0.0251 (12)	0.0214 (11)	0.0255 (12)	-0.0074 (9)	-0.0121 (9)	0.0016 (9)
C16	0.0243 (11)	0.0212 (11)	0.0221 (11)	-0.0085 (9)	-0.0093 (9)	-0.0001 (9)
C19	0.0258 (12)	0.0310 (13)	0.0279 (12)	-0.0145 (10)	-0.0099 (10)	0.0027 (10)
C12	0.0256 (12)	0.0219 (11)	0.0256 (11)	-0.0115 (9)	-0.0099 (9)	0.0020 (9)
O3	0.0261 (9)	0.0334 (10)	0.0636 (13)	-0.0083 (8)	-0.0114 (9)	-0.0124 (9)
C5	0.0301 (12)	0.0213 (11)	0.0248 (12)	-0.0083 (10)	-0.0093 (10)	0.0005 (9)
C4	0.0369 (14)	0.0273 (13)	0.0303 (13)	-0.0046 (11)	-0.0087 (11)	-0.0040 (10)
C14	0.0327 (13)	0.0255 (12)	0.0241 (12)	-0.0113 (10)	-0.0063 (10)	-0.0070 (10)
C13	0.0337 (13)	0.0317 (13)	0.0246 (12)	-0.0182 (11)	-0.0113 (10)	-0.0029 (10)
C15	0.0239 (12)	0.0250 (12)	0.0274 (12)	-0.0058 (9)	-0.0073 (9)	-0.0040 (10)
С9	0.0380 (15)	0.0400 (15)	0.0478 (16)	-0.0155 (12)	-0.0235 (13)	-0.0031 (13)
C7	0.0434 (15)	0.0287 (13)	0.0365 (14)	-0.0074 (11)	-0.0180 (12)	-0.0090 (11)
C10	0.0288 (13)	0.0325 (13)	0.0387 (14)	-0.0082 (11)	-0.0117 (11)	-0.0098 (11)
C1	0.0318 (13)	0.0284 (13)	0.0433 (15)	-0.0104 (11)	-0.0180 (11)	-0.0015 (11)
C8	0.0552 (18)	0.0359 (15)	0.0451 (16)	-0.0165 (13)	-0.0280 (14)	-0.0090 (12)
C2	0.0274 (13)	0.0329 (14)	0.0530 (17)	-0.0102 (11)	-0.0160 (12)	0.0063 (13)
N3	0.0444 (15)	0.0481 (14)	0.0441 (14)	-0.0132 (12)	-0.0057 (11)	-0.0256 (12)
C3	0.0300 (14)	0.0309 (14)	0.0419 (15)	-0.0007 (11)	-0.0053 (12)	-0.0006 (12)
O6	0.0595 (16)	0.0778 (18)	0.0809 (18)	0.0265 (13)	-0.0342 (14)	-0.0527 (15)
O2	0.0200 (8)	0.0421 (10)	0.0341 (9)	-0.0035 (7)	-0.0137 (7)	-0.0073 (8)
O4	0.0339 (10)	0.0497 (11)	0.0392 (10)	-0.0286 (9)	-0.0109 (8)	-0.0037 (9)
05	0.0539 (16)	0.176 (3)	0.130 (3)	-0.0378 (19)	0.0024 (16)	-0.128 (3)
O1W	0.0276 (9)	0.0288 (9)	0.0382 (10)	-0.0091 (7)	-0.0093 (8)	-0.0044 (8)
08	0.0297 (9)	0.0333 (9)	0.0322 (9)	-0.0078 (8)	-0.0055 (8)	-0.0059 (8)
C32	0.0309 (13)	0.0255 (12)	0.0277 (12)	-0.0107 (10)	-0.0125 (10)	-0.0058 (10)
C33	0.0542 (18)	0.0416 (16)	0.0379 (16)	-0.0079 (14)	-0.0182 (14)	0.0054 (13)

Geometric parameters (Å, °)

Co1—O2	2.0503 (16)	C5—C4	1.384 (3)
Co1—O2 ⁱ	2.0503 (16)	C4—C3	1.381 (4)
Co1—O9 ⁱ	2.1153 (15)	С4—Н4А	0.9300
Co1—O9	2.1153 (15)	C14—C15	1.375 (3)
Co1—O4 ⁱⁱ	2.1154 (17)	C14—C13	1.380 (4)
Co1—O4 ⁱⁱⁱ	2.1154 (17)	C14—N3	1.471 (3)
Co2—O1	2.0392 (15)	C13—H13A	0.9300
Co2—O1W	2.0831 (18)	C15—H15A	0.9300
Co2—N1	2.1053 (19)	С9—С8	1.372 (4)
Co2—N2	2.1249 (19)	C9—C10	1.380 (4)
Co2—O8	2.1668 (18)	С9—Н9А	0.9300
Co2—O9	2.2382 (16)	C7—C8	1.382 (4)
N1—C1	1.338 (3)	С7—Н7А	0.9300
N1—C5	1.350 (3)	C10—H10A	0.9300
N2—C10	1.331 (3)	C1—C2	1.377 (4)
N2—C6	1.345 (3)	C1—H1A	0.9300
C6—C7	1.385 (3)	C8—H8A	0.9300
C6—C5	1.487 (3)	C2—C3	1.380 (4)
O1—C17	1.259 (3)	C2—H2A	0.9300
O9—C32	1.281 (3)	N3—O5	1.199 (3)
C11—C16	1.391 (3)	N3—O6	1.206 (3)
C11 C12	1 205 (2)	C2 112 A	0.0200
011-012	1.393 (3)	Сэ—нэа	0.9300
C11—E12 C11—H11A	0.9300	O4—Col ^{iv}	2.1154 (17)
C11—H11A C17—O2	0.9300 1.248 (3)	O4—Co1 ^{iv} O1W—H1WA	2.1154 (17) 0.826 (10)
C11—H11A C17—O2 C17—C16	1.393 (3) 0.9300 1.248 (3) 1.508 (3)	O4—Co1 ^{iv} O1W—H1WA O1W—H1WB	2.1154 (17) 0.826 (10) 0.824 (10)
C11—C12 C11—H11A C17—O2 C17—C16 C16—C15	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3)	O4—Co1 ^{iv} O1W—H1WA O1W—H1WB O8—C32	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3)
C11—C12 C11—H11A C17—O2 C17—C16 C16—C15 C19—O3	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3)	C3—H3A O4—Co1 ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4)
C11—H11A C17—O2 C17—C16 C16—C15 C19—O3 C19—O4	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3)	C3—H3A O4—Co1 ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33 C33—H33A	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600
C11—C12 C11—H11A C17—O2 C17—C16 C16—C15 C19—O3 C19—O4 C19—C12	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3)	C3—H3A O4—Col ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33 C33—H33A C33—H33B	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600
C11—C12 C11—H11A C17—O2 C17—C16 C16—C15 C19—O3 C19—O4 C19—C12 C12—C13	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3)	C3—H3A O4—Co1 ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33 C33—H33A C33—H33B C33—H33B	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 0.9600
C11—C12 C11—H11A C17—O2 C17—C16 C16—C15 C19—O3 C19—O4 C19—C12 C12—C13 O2—Co1—O2 ⁱ	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3) 180.0	C3—H3A O4—Col ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33 C33—H33A C33—H33B C33—H33C C13—C12—C19	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 0.9600 119.0 (2)
C11-C12 C11-H11A C17-O2 C17-C16 C16-C15 C19-O3 C19-O4 C19-C12 C12-C13 O2-Co1-O2 ⁱ O2-Co1-O9 ⁱ	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3) 180.0 92.58 (6)	C3—H3A O4—Co1 ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33 C33—H33A C33—H33B C33—H33C C13—C12—C19 C11—C12—C19	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 0.9600 119.0 (2) 121.4 (2)
C11-C12 C11-H11A C17-O2 C17-C16 C16-C15 C19-O3 C19-O4 C19-C12 C12-C13 O2-Co1-O2 ⁱ O2-Co1-O9 ⁱ O2 ⁱ -Co1-O9 ⁱ	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3) 180.0 92.58 (6) 87.42 (6)	C3—H3A O4—Col ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33 C33—H33A C33—H33B C33—H33B C33—H33C C13—C12—C19 C11—C12—C19 N1—C5—C4	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 0.9600 119.0 (2) 121.4 (2) 121.7 (2)
C11-C12 C11-H11A C17-O2 C17-C16 C16-C15 C19-O3 C19-O4 C19-C12 C12-C13 O2-Co1-O2 ⁱ O2-Co1-O9 ⁱ O2 ⁱ -Co1-O9 ⁱ O2-Co1-O9 ⁱ	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3) 180.0 92.58 (6) 87.42 (6)	C3—H3A O4—Co1 ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33 C33—H33A C33—H33B C33—H33C C13—C12—C19 C11—C12—C19 N1—C5—C4 N1—C5—C6	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 0.9600 119.0 (2) 121.4 (2) 121.7 (2) 115.1 (2)
C11-C12 C11-H11A C17-O2 C17-C16 C16-C15 C19-O3 C19-O4 C19-C12 C12-C13 O2-Co1-O2 ⁱ O2-Co1-O9 ⁱ O2 ⁱ -Co1-O9 ⁱ O2 ⁱ -Co1-O9 O2 ⁱ -Co1-O9	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3) 180.0 92.58 (6) 87.42 (6) 92.58 (6)	C3—H3A O4—Col ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33 C33—H33A C33—H33B C33—H33C C11—C12—C19 C11—C12—C19 N1—C5—C4 N1—C5—C6 C4—C5—C6	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 0.9600 119.0 (2) 121.4 (2) 121.7 (2) 115.1 (2) 123.2 (2)
C11-C12 C11-H11A C17-O2 C17-C16 C16-C15 C19-O3 C19-O4 C19-C12 C12-C13 O2-Co1-O2 ⁱ O2-Co1-O9 ⁱ O2 ⁱ -Co1-O9 O2 ⁱ -Co1-O9 O9 ⁱ -Co1-O9	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3) 180.0 92.58 (6) 87.42 (6) 92.58 (6) 180.000 (1)	C3—H3A O4—Col ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33 C33—H33A C33—H33B C33—H33C C11—C12—C19 C11—C12—C19 N1—C5—C4 N1—C5—C6 C4—C5	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 0.9600 119.0 (2) 121.4 (2) 121.7 (2) 115.1 (2) 123.2 (2) 119.0 (2)
C11-C12 C11-H11A C17-O2 C17-C16 C16-C15 C19-O3 C19-O4 C19-C12 C12-C13 O2-Co1-O2 ⁱ O2-Co1-O9 ⁱ O2 ⁱ -Co1-O9 ⁱ O2 ⁱ -Co1-O9 O9 ⁱ -Co1-O9 O2 ⁱ -Co1-O9 O2-Co1-O9	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3) 180.0 92.58 (6) 87.42 (6) 87.42 (6) 92.58 (6) 180.000 (1) 90.67 (7)	C3—H3A O4—Col ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33 C33—H33A C33—H33B C33—H33C C11—C12—C19 C11—C12—C19 N1—C5—C4 N1—C5—C6 C4—C5 C3—C4—H4A	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 0.9600 119.0 (2) 121.4 (2) 121.7 (2) 115.1 (2) 123.2 (2) 119.0 (2) 120.5
C11-C12 C11-H11A C17-O2 C17-C16 C16-C15 C19-O3 C19-O4 C19-C12 C12-C13 O2-Co1-O2 ⁱ O2-Co1-O9 ⁱ O2 ⁱ -Co1-O9 ⁱ O2 ⁱ -Co1-O9 O2 ⁱ -Co1-O9 O2 ⁱ -Co1-O9 O2 ⁱ -Co1-O9 O2 ⁱ -Co1-O9	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3) 180.0 92.58 (6) 87.42 (6) 92.58 (6) 180.000 (1) 90.67 (7) 89.33 (7)	C3—H3A O4—Col ^{iv} O1W—H1WA O1W—H1WB 08—C32 C32—C33 C33—H33A C33—H33B C33—H33C C11—C12—C19 C11—C12—C19 N1—C5—C4 N1—C5—C6 C3—C4—C5 C3—C4—H4A C5—C4—H4A	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 119.0 (2) 121.4 (2) 121.7 (2) 115.1 (2) 123.2 (2) 119.0 (2) 120.5
C11-C12 C11-H11A C17-O2 C17-C16 C16-C15 C19-O3 C19-O4 C19-C12 C12-C13 O2-Co1-O2 ⁱ O2-Co1-O9 ⁱ O2 ⁱ -Co1-O9 ⁱ O2 ⁱ -Co1-O9 O9 ⁱ -Co1-O9 O9 ⁱ -Co1-O4 ⁱⁱ O2 ⁱ -Co1-O4 ⁱⁱ O2 ⁱ -Co1-O4 ⁱⁱ	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3) 180.0 92.58 (6) 87.42 (6) 87.42 (6) 92.58 (6) 180.000 (1) 90.67 (7) 89.33 (7) 88.72 (7)	C3—H3A O4—Col ^{iv} O1W—H1WA O1W—H1WB O8—C32 C32—C33 C33—H33A C33—H33B C33—H33C C13—C12—C19 C11—C12—C19 N1—C5—C4 N1—C5—C6 C4—C5 C3—C4—H4A C5—C4—H4A C15—C14—C13	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 0.9600 119.0 (2) 121.4 (2) 121.7 (2) 115.1 (2) 123.2 (2) 119.0 (2) 120.5 120.5 123.5 (2)
C11-C12 C11-H11A C17-O2 C17-C16 C16-C15 C19-O3 C19-O4 C19-C12 C12-C13 O2-Co1-O2 ⁱ O2-Co1-O9 ⁱ O2 ⁱ -Co1-O9 ⁱ O2 ⁱ -Co1-O9 O9 ⁱ -Co1-O9 O2 ⁱ -Co1-O9 O2 ⁱ -Co1-O4 ⁱⁱ O9 ⁱ -Co1-O4 ⁱⁱ O9 ⁱ -Co1-O4 ⁱⁱ	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3) 180.0 92.58 (6) 87.42 (6) 92.58 (6) 180.000 (1) 90.67 (7) 89.33 (7) 88.72 (7) 91.28 (7)	$\begin{array}{c} C3 = H3A \\ O4 = C01^{iv} \\ O1W = H1WA \\ O1W = H1WB \\ O8 = C32 \\ C32 = C33 \\ C33 = H33A \\ C33 = H33A \\ C33 = H33B \\ C33 = H33C \\ C13 = C12 = C19 \\ C11 = C12 = C19 \\ C11 = C12 = C19 \\ C11 = C12 = C19 \\ N1 = C5 = C4 \\ N1 = C5 = C4 \\ N1 = C5 = C6 \\ C3 = C4 = C5 \\ C3 = C4 = H4A \\ C5 = C4 = H4A \\ C15 = C14 = C13 \\ C15 = C14 = N3 \\ \end{array}$	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 119.0 (2) 121.4 (2) 121.7 (2) 115.1 (2) 123.2 (2) 119.0 (2) 120.5 120.5 123.5 (2) 118.4 (2)
C11-C12 C11-H11A C17-O2 C17-C16 C16-C15 C19-O3 C19-O4 C19-C12 C12-C13 O2-Co1-O2 ⁱ O2-Co1-O9 ⁱ O2 ⁱ -Co1-O9 ⁱ O2 ⁱ -Co1-O9 O9 ⁱ -Co1-O9 O9 ⁱ -Co1-O9 O9 ⁱ -Co1-O4 ⁱⁱ O2 ⁱ -Co1-O4 ⁱⁱ O9 ⁱ -Co1-O4 ⁱⁱ O9-Co1-O4 ⁱⁱ O2-Co1-O4 ⁱⁱⁱ	1.393 (3) 0.9300 1.248 (3) 1.508 (3) 1.388 (3) 1.244 (3) 1.252 (3) 1.510 (3) 1.390 (3) 180.0 92.58 (6) 87.42 (6) 92.58 (6) 180.000 (1) 90.67 (7) 89.33 (7) 88.72 (7) 89.33 (7)	$\begin{array}{c} C3 = H3A \\ O4 = C01^{iv} \\ O1W = H1WA \\ O1W = H1WB \\ O8 = C32 \\ C32 = C33 \\ C33 = H33A \\ C33 = H33A \\ C33 = H33B \\ C33 = H33C \\ C13 = C12 = C19 \\ C11 = C12 = C19 \\ C11 = C12 = C19 \\ C11 = C12 = C19 \\ N1 = C5 = C4 \\ N1 = C5 = C6 \\ C4 = C5 = C6 \\ C3 = C4 = C5 \\ C3 = C4 = H4A \\ C5 = C4 = H4A \\ C15 = C14 = H4A \\ C15 = C14 = N3 \\ C13 = C14 = N3 \end{array}$	2.1154 (17) 0.826 (10) 0.824 (10) 1.248 (3) 1.493 (4) 0.9600 0.9600 0.9600 119.0 (2) 121.4 (2) 121.7 (2) 115.1 (2) 123.2 (2) 119.0 (2) 120.5 120.5 120.5 123.5 (2) 118.4 (2) 118.1 (2)

supplementary materials

$O9^{1}$ —Co1—O4 ¹¹¹	91.28 (7)	С14—С13—Н13А	120.9
O9—Co1—O4 ⁱⁱⁱ	88.72 (7)	C12—C13—H13A	120.9
O4 ⁱⁱ —Co1—O4 ⁱⁱⁱ	180.0	C14—C15—C16	118.3 (2)
O1—Co2—O1W	94.98 (7)	C14—C15—H15A	120.9
01—Co2—N1	94.01 (7)	C16—C15—H15A	120.9
O1W—Co2—N1	103.72 (7)	C8—C9—C10	118.6 (2)
O1—Co2—N2	170.78 (7)	С8—С9—Н9А	120.7
O1W—Co2—N2	87.41 (7)	С10—С9—Н9А	120.7
N1—Co2—N2	76.77 (7)	C8—C7—C6	118.7 (2)
O1—Co2—O8	98.32 (7)	С8—С7—Н7А	120.7
O1W—Co2—O8	152.53 (7)	С6—С7—Н7А	120.7
N1—Co2—O8	99.22 (7)	N2—C10—C9	122.5 (2)
N2—Co2—O8	83.29 (7)	N2-C10-H10A	118.8
O1—Co2—O9	94.50 (6)	С9—С10—Н10А	118.8
O1W—Co2—O9	95.80 (7)	N1—C1—C2	123.0 (2)
N1—Co2—O9	157.91 (7)	N1—C1—H1A	118.5
N2—Co2—O9	94.12 (7)	C2—C1—H1A	118.5
O8—Co2—O9	59.37 (6)	C9—C8—C7	119.6 (2)
C1—N1—C5	118.4 (2)	С9—С8—Н8А	120.2
C1—N1—Co2	124.99 (16)	С7—С8—Н8А	120.2
C5—N1—Co2	116.21 (15)	C1—C2—C3	118.4 (2)
C10—N2—C6	119.0 (2)	С1—С2—Н2А	120.8
C10—N2—Co2	124.78 (16)	С3—С2—Н2А	120.8
C6—N2—Co2	116.22 (15)	O5—N3—O6	122.5 (3)
N2—C6—C7	121.6 (2)	O5—N3—C14	117.9 (3)
N2—C6—C5	114.8 (2)	O6—N3—C14	119.3 (2)
C7—C6—C5	123.6 (2)	C2—C3—C4	119.5 (2)
C17—O1—Co2	124.66 (14)	С2—С3—НЗА	120.3
C32—O9—Co1	126.76 (14)	С4—С3—Н3А	120.3
C32—O9—Co2	88.61 (13)	C17—O2—Co1	138.15 (16)
Co1—O9—Co2	121.97 (8)	C19—O4—Co1 ^{iv}	137.23 (17)
C16—C11—C12	121.0 (2)	Co2—O1W—H1WA	109 (2)
C16—C11—H11A	119.5	Co2—O1W—H1WB	111 (2)
C12—C11—H11A	119.5	H1WA—O1W—H1WB	109 (2)
O2—C17—O1	126.4 (2)	C32—O8—Co2	92.74 (15)
O2—C17—C16	116.0 (2)	O8—C32—O9	119.2 (2)
O1—C17—C16	117.6 (2)	O8—C32—C33	120.5 (2)
C15—C16—C11	119.6 (2)	O9—C32—C33	120.2 (2)
C15—C16—C17	117.9 (2)	С32—С33—Н33А	109.5
C11—C16—C17	122.5 (2)	С32—С33—Н33В	109.5
O3—C19—O4	125.4 (2)	H33A—C33—H33B	109.5
O3—C19—C12	118.0 (2)	С32—С33—Н33С	109.5
04-C19-C12	116.6 (2)	H33A—C33—H33C	109.5
C13—C12—C11	119.5 (2)	H33B—C33—H33C	109.5
Symmetry codes: (i) $-x -v+2$ $-z+1$ (i)	i) $x-1$, v , z ; (iii) $-x+1 -v+2$	z = -z + 1; (iv) $x + 1, v, z$	
J J	, ,,,,,,, ····, y··	· · · · · · · · · · · · · · · · · · ·	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1W—H1WA···O3 ⁱⁱ	0.83 (2)	1.99 (2)	2.755 (3)	154 (2)
O1W—H1WB···O3 ^v	0.826 (18)	1.96 (2)	2.762 (3)	163 (3)
Symmetry codes: (ii) $x-1$, y , z ; (v) $-x+1$, $-y+1$, $-z+1$.				

